Area

Rumman Ansari   Software Engineer   2024-07-28 09:14:19   75  Share
Subject Syllabus DetailsSubject Details
☰ TContent
☰Fullscreen

Table of Content:

Area Formulas

Square

\[ \text{Area of a Square} = \text{side}^2 \]

Rectangle

\[ \text{Area of a Rectangle} = \text{length} \times \text{breadth} \]

Triangle

\[ \text{Area of a Triangle} = \frac{1}{2} \times \text{base} \times \text{height} \]

For a triangle with sides \(a\), \(b\), and \(c\), and semi-perimeter \(s = \frac{a + b + c}{2}\):

\[ \text{Area} = \sqrt{s(s - a)(s - b)(s - c)} \]

Parallelogram

\[ \text{Area of a Parallelogram} = \text{base} \times \text{height} \]

Trapezium

\[ \text{Area of a Trapezium} = \frac{1}{2} \times (\text{sum of parallel sides}) \times \text{height} \]

Circle

\[ \text{Area of a Circle} = \pi \times \text{radius}^2 \]

Ellipse

\[ \text{Area of an Ellipse} = \pi \times \text{semi-major axis} \times \text{semi-minor axis} \]

Sector of a Circle

\[ \text{Area of a Sector} = \frac{\theta}{360} \times \pi \times \text{radius}^2 \]

where \(\theta\) is the central angle in degrees.

Rhombus

\[ \text{Area of a Rhombus} = \frac{1}{2} \times \text{diagonal}_1 \times \text{diagonal}_2 \]

Polygon

For a regular polygon with \(n\) sides of length \(a\) and apothem \(a_p\):

\[ \text{Area} = \frac{1}{2} \times n \times a \times a_p \]

MCQ Available

There are 29 MCQs available for this topic.

29 MCQTake Quiz