Logarithm

Rumman Ansari   Software Engineer   2024-07-28 08:58:38   69  Share
Subject Syllabus DetailsSubject Details
☰ TContent
☰Fullscreen

Table of Content:

Logarithm Formulas

Definition

A logarithm is the power to which a number must be raised to obtain another number. If \( b^y = x \), then \( \log_b(x) = y \).

\[ \log_b(x) = y \iff b^y = x \]

Common Logarithm Properties

Product Rule

\[ \log_b(x \cdot y) = \log_b(x) + \log_b(y) \]

Quotient Rule

\[ \log_b\left(\frac{x}{y}\right) = \log_b(x) - \log_b(y) \]

Power Rule

\[ \log_b(x^y) = y \cdot \log_b(x) \]

Change of Base Formula

\[ \log_b(x) = \frac{\log_k(x)}{\log_k(b)} \]

Special Logarithms

Common Logarithm (Base 10)

\[ \log_{10}(x) = \log(x) \]

Natural Logarithm (Base \( e \))

\[ \log_e(x) = \ln(x) \]

Logarithm of 1

\[ \log_b(1) = 0 \quad \text{for any base } b \]

Logarithm of the Base

\[ \log_b(b) = 1 \]

Logarithm of a Reciprocal

\[ \log_b\left(\frac{1}{x}\right) = -\log_b(x) \]

Sum and Difference of Logarithms

Sum

\[ \log_b(x + y) \neq \log_b(x) + \log_b(y) \]

Difference

\[ \log_b(x - y) \neq \log_b(x) - \log_b(y) \]
MCQ Available

There are 5 MCQs available for this topic.

5 MCQ